Accueil du site > À la une > Entanglement-screening by nonlinear resonances

A member of the Laboratory, in collaboration with researchers from Australia, United States and Germany, has recently shown that nonlinear resonances in a classically mixed phase space allow to define generic, strongly entangled multi-partite quantum states. The robustness of their multipartite entanglement was shown to increase with the particle number, i.e. in the semiclassical limit, for those classes of diffusive noise which assist the quantum-classical transition.

The robustness of the entanglement produced by the implementation of the quantum version of the Harper’s map is examined under the action of noise, possibly due to interaction with some environment.

The system consists of qubits and the computational basis of the -partite system

is identified with the position basis of the quantum map on the torus ( or ) :

Thus the action of the map, be it chaotic or regular, will naturally generate entanglement. It is well known that chaotic dynamics seems to produce entanglement faster that regular dynamics. However, the focus of this work is on how robust the entanglement produced is depending on the underlying classical phase space structure.

As a measure of entanglement, the *k*-partite concurrence
concurrence as defined by Mintert, et al. is used.
On pure states,
this quantity is given by the square root of a balanced average over the squared concurrence of all nontrivial bipartitions of the -set under scrutiny, and vanishes exclusively for -separable states. Moreover, it has the particularly advantageous property
, .
The latter allows to compare the entanglement inscribed into quantum states composed of an increasing number of subsystems.
Furthermore, has a generalization for mixed states (through the convex roof construction), which is the one used.

**Results :**
The initial state is a minimum uncertainty Gaussian wave packet (size ).
The initial value of for this types of states is non-zero and depends on the position of the center of the packet.
Unitary (open symbols) and noisy (filled symbols) evolution of initial conditions is studied in the regular island (squares) and in the chaotic sea (triangles).
Under purely unitary dynamics (open symbols), chaotic dynamics induces strong coupling between all position basis states and will increase rapidly for the initial condition placed in the chaotic domain, and saturate once equilibrated over the chaotic eigenstates of the quantized Harper map. Saturation to maximal value of for pure states would be reached in the limit . The qualitative behavior does not depend on the system size. On the other hand, for the state initially placed within the elliptic island, size *does* matter : for , the initial coherent state cannot be well accomodated within the elliptic island in phase space (due to the finite size of ), and exhibits non-negligible tunneling coupling to its chaotic environment. Consequently, as time proceeds, the coherently evolved state spreads more and more over the chaotic phase space component, and its entanglement finally reaches essentially the same value as for the initial condition within the chaotic domain, just after considerably longer time — essentially determined by the relevant tunneling matrix elements (which, in general, will be strongly fluctuating under small parameter changes. In contrast, for , tunneling from the island into the chaotic sea occurs on a much longer time scale (which, on average, increases exponentially with ), and remains invisible on the time scale covered in
the figure. The small oscillations of are due to the spreading of the initial wave packet along the regular island’s tori.

This screening of the initial state from the chaotic sea when initially placed within the elliptic island, more and more efficient with increasing particle number, has an immediate consequence for he robustness of the state’s multipartite entanglement under the influence of decoherence, as illustrated by the filled symbols in the first figure : For chaotic initial conditions, an initial rise of is rather quickly overruled by the loss of multiparticle coherence and hence of entanglement, and this is once again largely independent of . However, for initial conditions within the island, again leads to asymptotically the same behaviour as for the chaotic initial condition, while induces entanglement dynamics almost completely unaffected by the noise.
Thus, for sufficiently large , equivalent to sufficiently small , and correspondingly suppressed tunneling
rates, the classical nonlinear resonance creates strongly entangled
multipartite states which, in addition, are robust against noise.
This is further illustrated in the second figure where C_*k=8*(t=16)$ is plotted for different initial conditions, in the absence and in the presence of noise. Clearly, entanglement is robust when shielded by the resonance island. While chaotic dynamics produce slighty stronger Entanglement, this is significantly more fragile under decoherence.

Details on the **type of decoherence** considered and analysis of other **(non-local)** noises are presented in the corresponding paper, Entanglement-screening by nonlinear resonances., which has been published in Phys. Rev. Lett. 98, 120504 (2007). The corresponding author in the laboratory is García-Mata Ignacio . Hospitality at MPI-PKS is gratefully acknowledged.

Dans la même rubrique :

- Exceeding the Pauli limit
- Measuring the size of Schrödinger’s cat
- What is the true statistics of holons ?
- Predicting the maximum or the minimum of a random signal
- How to reproduce bacterial propulsion in a biomimetic way ?
- Dependence of DNA Persistence Length on Ionic Strength of Solutions with Monovalent and Divalent Salts
- Is 1D physics experimentally accessible in real systems ?
- An argentinian-french collaboration : a novel mechanism for fractional magnetization plateaus !
- An unconventional phase transition
- DNA bubbles and bending : how conformational fluctuations modify its thermal denaturation
- Phase separation and flux quantization in the doped quantum dimer model on the square and triangular lattices
- Valence Bond Entanglement Entropy
- Spin gap and string order parameter in the ferromagnetic Spiral Staircase Heisenberg Ladder
- Generic mixed columnar-plaquette phases in Rokhsar-Kivelson models
- The Pairing Glue in High-Temperature Superconductors
- Effective Theory of Magnetization Plateaux in the Shastry-Sutherland Lattice
- A gauge theory picture of an exotic transition in a dimer model
- Why DNA chains are "kinked" when observed on surfaces
- Computing fidelity at magnetic quantum phase transitions
- Quantifying Quantumness and the Quest for Queens of Quantum