Partenaires

CNRS
UPS



Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > Annuaire > Hadrien Kurkjian

Hadrien Kurkjian

Chargé de recherche au CNRS

Contact : kurkjian@irsamc.ups-tlse.fr

Adresse : Laboratoire de Physique Théorique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France

Bureau : 303 Bâtiment 3R1B4

Sujets de recherche

Ma recherche porte sur les systèmes quantiques macroscopiques : gaz d’atomes froids, supraconducteurs et hélium superfluide. J’étudie le problème à N corps dans ces systèmes afin de connaître le comportement collectif des particules, le diagramme de phase, les excitations élémentaires et les processus de relaxation. Je cherche à décrire aussi bien le régime d’interactions faibles que fortes par des méthodes analytiques, soit à l’aide de théories effectives exactes telles que l’hydrodynamique, soit en recherchant un traitement approché des interactions. J’ai obtenu des résultats théoriques sur le spectre des modes collectifs, leur temps de vie et sur la perte de cohérence temporelle qui sont vérifiables à court terme par des expériences d’atomes froids ou de matière condensée.

Principaux résultats

  • Relation de dispersion, taux d’amortissement et observabilité de la branche de « Higgs » d’un condensat fermionique ou d’un supraconducteur [12,16,18].
  • Calcul analytique du gap (bande interdite) d’un condensat de paires de fermions en interaction forte au-delà de la théorie BCS [17].
  • Temps de perte de cohérence et temps de thermalisation des condensats fermioniques [4,10].
  • Description de la formation de trimères d’Efimov dans un gaz de bosons préparé en régime d’interaction forte par une trempe des interactions [20].
  • Temps de vie des phonons dans un superfluide. En désaccord avec un premier calcul de Landau et Khalatnikov [6,8].
  • Simulation de l’expérience d’intrication non locale de condensats de Bose Einstein réalisée dans les groupes de Bâle et Heidelberg [2,9].

Parcours académique

Enseignement

  • 2021-2021 Direction de la thèse de Thomas Repplinger
  • 2012-2017 Cours de niveau licence (Électromagnétisme, phénomènes ondulatoire) à des élèves ingénieurs en alternance à l’École des Mines
  • 2017-2020 Codirection de la thèse de Senne Van Loon soutenue à l’université d’Anvers.

    Publications

[24] HK, S. Van Loon, J. Tempere. Quasiparticle disintegration in superfluid Fermi gases. arXiv:2111.04692, submitted to SciPost, 2021.

[23] S. Musolino, HK, M. Van Regemortel, M. Wouters, S. J. J. M. F. Kokkelmans, and V. E. Colussi. Bose-Einstein condensation of Efimovian triples in the unitary Bose gas. arXiv:2106.10991 accepted in Phys. Rev. Lett., 2021.

[22] S. N. Klimin, J. Tempere, and HK. Collective excitations of superfluid Fermi gases near the transition temperature. Phys. Rev. A, 103:043336, 2021.

[20] V. E. Colussi, HK, M. Van Regemortel, S. Musolino, J. van de Kraats, M. Wouters, and S. J. J. M. F. Kokkelmans. Cumulant theory of the unitary Bose gas : Prethermal and Efimovian dynamics. Phys. Rev. A, 102:063314, 2020.

[19] HK and Zoran Ristivojevic. Damping of elementary excitations in 1D dipolar Bose gases. Phys. Rev. Research.

[18] HK, J. Tempere, and S.N. Klimin. Linear response and collective modes of a superfluid Fermi gas. Scientific reports, 10, 11591

[17] S. Van Loon, J. Tempere, and HK. Beyond Mean-Field Corrections to the Quasiparticle Spectrum of Superfluid Fermi Gases. Phys Rev Lett, 124:073404, 2020.

[16] Y. Castin and HK. Collective excitation branch in the continuum of paircondensed Fermi gases : analytical study and scaling laws. arXiv:1907.12238, CR. Phys., 21 (2020) pp. 253

[15] S. N. Klimin, HK, and J. Tempere. Leggett collective excitations in a two-band Fermi superfluid at finite temperatures. New Journal of Physics, 21, 11:113043, 2019.

[14] S. N. Klimin, J. Tempere, and HK. Phononic collective excitations in superfluid Fermi gases at nonzero temperatures. Phys Rev A, 100:063634, 2019.

[13] S. Klimin, HK, and J. Tempere. Anderson–Bogoliubov Collective Excitations in Superfluid Fermi Gases at Nonzero Temperatures. Journal of Low Temperature Physics, 196, 1:102, 2019.

[12] HK, S. N. Klimin, J. Tempere, and Y. Castin. Pair-Breaking Collective Branch in BCS Superconductors and Superfluid Fermi Gases. Phys Rev Lett, 122:093403, 2019.

[11] S. Van Loon, W. Van Alphen, J. Tempere, and HK. Transition from supersonic to subsonic waves in superfluid Fermi gases. Phys Rev A, 98:063627, 2018.

[10] M. Van Regemortel, HK, M. Wouters, and I. Carusotto. Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp. Phys Rev A, 98:053612, 2018.

[9] HK, K. Pawłowski, and A. Sinatra. EPR entangled BEC in state-dependent potentials : A dynamical study. Phys Rev A, 96:013621, 2017.

[8] Y. Castin, A. Sinatra, and HK. Landau Phonon-Roton Theory Revisited for Superfluid 4He and Fermi Gases. Phys. Rev. Lett., 119:260402, 2017.

[7] HK and J. Tempere. Absorption and emission of a collective excitation by a fermionic quasiparticle in a Fermi superfluid. New Journal of Physics, 19, 11:113045, 2017.

[6] HK, Y. Castin, and A. Sinatra. Landau-Khalatnikov phonon damping in strongly interacting Fermi gases. Europhysics Letters, 116, 4:40002, 2016.

[5] HK, Y. Castin, and A. Sinatra. Three-Phonon and Four-Phonon Interaction Processes in a Pair-Condensed Fermi Gas. Annalen der Physik, 529, 9:1600352, 2017.

[4] HK, Y. Castin, and A. Sinatra. Brouillage thermique d’un gaz cohérent de fermions. Comptes Rendus Physique, 17, 7:789 , 2016.

[3] HK, Y. Castin, and A. Sinatra. Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover. Phys Rev A, 93:013623, 2016.

[2] HK, K. Pawłowski, A. Sinatra, and P. Treutlein. Spin squeezing and Einstein-Podolsky-Rosen entanglement of two bimodal condensates in state-dependent potentials. Phys Rev A, 88:043605, 2013.

[1] HK, Y. Castin and A. Sinatra. Phase operators and blurring time of a pair-condensed Fermi gas. Phys Rev A, 88:063623, 2013.