Accueil du site > Séminaires > Séminaires 2014 > Shortcuts to adiabaticity in many-body systems
Vendredi 28 mars 2014-14:00
Adolfo del Campo (Theoretical Division, Los Alamos National Laboratory)
par
- 28 mars 2014
Attention : date inhabituelle, Vendredi 28 mars
This talk is a "tapas selection", reviewing recent advances in the
design of shortcuts to adiabaticity in many-body systems.
Adiabatic invariants, and the inversion of dynamical scaling laws,
will be applied to trapped ultracold gases [1-3]. In particular, a
proposal will be discussed to drive controlled expansions in which
quantum correlations are preserved, essentially realizing a quantum
dynamical microscope [2,3].
Controlling the dynamics through a quantum phase transition implies
an additional challenge : to prevent the formation of excitations in
spite of the critical slowing down in the neighborhood of the critical
point. According to the Kibble-Zurek mechanism, in inhomogeneous
systems with a spatially varying critical point, whenever the speed of
the spatial front crossing the transition is lower than the sound
velocity excitations can be completely suppressed [4,5].
Experimentally, this scenario has recently been explored in ion
Coulomb crystals [6].
An alternative approach in quantum critical systems exploits recent
advances in the simulation of coherent $k$-body-interactions and
transitionless quantum driving [7,8,9]. This method is ideally suited
to access the ground state manifold in quantum simulators.
We shall close introducing a generalized time-energy uncertainty
relation which is applicable to both isolated and open quantum
systems.
This relation constitutes a fundamental quantum speed limit for any
dynamical process [10].
REFERENCES :
1. X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guery-Odelin, J. G. Muga, Fast optimal frictionless atom coolingin harmonic traps, Phys. Rev. Lett. 104, 063002 (2010) .
2. A. del Campo, Frictionless quantum quenches in ultracold gases : a quantum dynamical microscope, Phys. Rev. A 84, 031606(R) (2011) .
3. A. del Campo, M. G. Boshier, Shortcuts to adiabaticity in a time-dependent box, Sci. Rep. 2, 648 (2012).
4. A. del Campo, G. De Chiara, G. Morigi, M. B. Plenio, A. Retzker, Structural defects in ion crystals by quenching the external potential : the inhomogeneous Kibble-Zurek mechanism, Phys. Rev. Lett. 105, 075701 (2010) .
5. K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T. Burgermeister, D. M. Meier, K. Kuhlmann, A. Retzker, M. B. Plenio, W.H. Zurek, A. del Campo, T. E. Mehlstäubler, Symmetry Breaking and Topological Defect Formation in Ion Coulomb Crystals, Nature Communications 4, 2291 (2013)
6. A. del Campo, T. W. B. Kibble, W. H. Zurek, Causality and non-equilibrium second-order phase transitions ininhomogeneous systems, J. Phys. : Condens. Matter 25, 404210 (2013). 7. A. del Campo, M. Rams, W. H. Zurek, Assisted finite-rate adiabatic passage across a quantum critical point : Exact solution for the quantum Ising model, Phys. Rev. Lett. 109, 115703 (2012) 8. A. del Campo, Shortcuts to adiabaticity by counter-diabatic driving, Phys. Rev. Lett. 111, 100502 (2013).
9. S. Deffner, C. Jarzynski, A. del Campo, Classical and quantum shortcuts to adiabaticity for scale-invariant driving, Phys. Rev. X (2014) ; arXiv:1401.1184
10. A. del Campo, I. L. Egusquiza, M. B. Plenio, S. F. Huelga, Quantum speed limits in open system dynamics, Phys. Rev. Lett. 110, 050403 (2013).
Post-scriptum :
contact : G. Lemarié