Partenaires

CNRS
UPS



Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > Publications > Publications 2009 > Interplay between the Transport of Solutes Across Nanofiltration Membranes and the Thermal Properties of the Thin Active Layer

Interplay between the Transport of Solutes Across Nanofiltration Membranes and the Thermal Properties of the Thin Active Layer

Hafedh Saidani, Nihel Ben Amar, John Palmeri and Andre Deratani

The thin active layer (TAL) of seven nanofiltration (NF) membranes was studied using differential scanning calorimetry, and the membranes were classified into two groups according to the polymer physical state (amorphous or semicrystalline). NF membrane performance in terms of permeate volume flux density and rejection of neutral solutes was investigated in temperature cycles. The modeling of rejection using a hindered transport theory showed irreversible and opposite pore size changes for the two groups of NF membranes when the maximum operating temperature of the cycle exceeded the glass-transition temperature of the TAL. A mechanism of pore deformation is proposed to explain the variation of the solute transport properties as a function of the temperature and the polymer physical state in the TAL.