Partenaires

CNRS
UPS



Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > Publications > Publications 2004 > Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions

Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions

Pierre-Henri Chavanis and Clément Sire

par Clément Sire - 11 avril 2006

We address the generalized thermodynamics and the collapse of a system of self-gravitating Langevin particles exhibiting anomalous diffusion in a space of dimension D. The equilibrium states correspond to polytropic distributions. The index n of the polytrope is related to the exponent of anomalous diffusion. We consider a high-friction limit and reduce the problem to the study of the nonlinear Smoluchowski-Poisson system. We show that the associated Lyapunov functional is the Tsallis free energy. We discuss in detail the equilibrium phase diagram of self-gravitating polytropes as a function of D and n and determine their stability by using turning points arguments and analytical methods. When no equilibrium state exists, we investigate self-similar solutions describing the collapse. These results can be relevant for astrophysical systems, two-dimensional vortices and for the chemotaxis of bacterial populations. Above all, this model constitutes a prototypical dynamical model of systems with long-range interactions which possesses a rich structure and which can be studied in great detail.

Preprint cond-mat/0303088