Partenaires

CNRS
UPS



Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > À la une > High performance computing : particles on the grid

High performance computing : particles on the grid

par Sylvain Capponi - 9 juillet 2016

In the field of solid-state physics, the behavior of strongly correlated systems is a topic of much interest from both a theoretical and experimental point of view. Indeed, these materials have some specific electronic properties : the electrons located on the outer layer are so strongly linked with their atom that, in order to moving, a considerable energy is needed while, in usual materials, they can move almost freely. At low temperature, these strongly correlated systems can behave as insulators, with remarkable magnetic properties, or even as superconductors, meaning transferring electricity without any loss of energy.

High performance computing is paramount

Theoretical models developed for predicting these properties are well known. The equations that apply to the behavior of electrons are simple but solving them analytically is tricky if not impossible because it has to be done without any approximation. Hence the need of using numerical simulation : it is the core work of Sylvain Capponi, teacher-researcher at the Laboratoire de physique théorique (LPT) of the Institut de recherche sur les systèmes atomiques et moléculaires complexes (IRSAMC) in Toulouse. "High performance computing is paramount for describing these systems because the equations integrate a very high number of atoms, thus a very high number of variables", he said.

See : http://genci.fr/en/phys-theo-systemes-correles